Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 892
Filtrar
1.
J Med Chem ; 66(14): 9642-9657, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37440703

RESUMO

The G-protein-coupled Y4-receptor (Y4R) and its endogenous ligand, pancreatic polypeptide (PP), suppress appetite in response to food intake and, thus, are attractive drug targets for body-weight control. The C-terminus of human PP (hPP), T32-R33-P34-R35-Y36-NH2, penetrates deep into the binding pocket with its tyrosine-amide and di-arginine motif. Here, we present two C-terminally amidated α,γ-hexapeptides (1a/b) with sequence Ac-R31-γ-CBAA32-R33-L34-R35-Y36-NH2, where γ-CBAA is the (1R,2S,3R)-configured 2-(aminomethyl)-3-phenylcyclobutanecarboxyl moiety (1a) or its mirror image (1b). Both peptides bind the Y4R (Ki of 1a/b: 0.66/12 nM) and act as partial agonists (intrinsic activity of 1a/b: 50/39%). Their induced-fit binding poses in the Y4R pocket are unique and build ligand-receptor contacts distinct from those of the C-terminus of the endogenous ligand hPP. We conclude that energetically favorable interactions, although they do not match those of the native ligand hPP, still guarantee high binding affinity (with 1a rivaling hPP) but not the maximum receptor activation.


Assuntos
Ciclobutanos , Neuropeptídeo Y , Humanos , Neuropeptídeo Y/metabolismo , Ligantes , Receptores de Neuropeptídeo Y/metabolismo , Polipeptídeo Pancreático/metabolismo
2.
Peptides ; 160: 170923, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36509169

RESUMO

Pancreatic polypeptide (PP), a member of the neuropeptide Y (NPY) family of peptides, is a hormone secreted from the endocrine pancreas with established actions on appetite regulation. Thus, through activation of hypothalamic neuropeptide Y4 (NPY4R or Y4) receptors PP induces satiety in animals and humans, suggesting potential anti-obesity actions. In addition, despite being actively secreted from pancreatic islets and evidence of local Y4 receptor expression, PP mediated effects on the endocrine pancreas have not been fully elucidated. To date, it appears that PP possesses an acute insulinostatic effect, similar to the impact of other peptides from the NPY family. However, it is interesting that prolonged activation of pancreatic Y1 receptors leads to established benefits on beta-cell turnover, preservation of beta-cell identity and improved insulin secretory responsiveness. This may hint towards possible similar anti-diabetic actions of sustained Y4 receptor modulation, since the Y1 and Y4 receptors trigger comparable cell signalling pathways. In terms of exploiting the prospective therapeutic promise of PP, this is severely restricted by a short circulating half-life as is the case for many regulatory peptide hormones. It follows that long-acting, enzyme resistant, forms of PP will be required to determine viability of the Y4 receptor as an anti-obesity and -diabetes drug target. The current review aims to refocus interest on the biology of PP and highlight opportunities for therapeutic development.


Assuntos
Diabetes Mellitus , Ilhotas Pancreáticas , Neuropeptídeos , Humanos , Animais , Polipeptídeo Pancreático/uso terapêutico , Polipeptídeo Pancreático/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Neuropeptídeo Y/metabolismo , Ilhotas Pancreáticas/metabolismo , Pâncreas/metabolismo
3.
Peptides ; 148: 170683, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34748791

RESUMO

Glucose homeostasis is maintained by the glucoregulatory hormones, glucagon, insulin and somatostatin, secreted from the islets of Langerhans. Glucagon is the body's most important anti-hypoglycemic hormone, mobilizing glucose from glycogen stores in the liver in response to fasting, thus maintaining plasma glucose levels within healthy limits. Glucagon secretion is regulated by both circulating nutrients, hormones and neuronal inputs. Hormones that may regulate glucagon secretion include locally produced insulin and somatostatin, but also urocortin-3, amylin and pancreatic polypeptide, and from outside the pancreas glucagon-like peptide-1 and 2, peptide tyrosine tyrosine and oxyntomodulin, glucose-dependent insulinotropic polypeptide, neurotensin and ghrelin, as well as the hypothalamic hormones arginine-vasopressin and oxytocin, and calcitonin from the thyroid. Each of these hormones have distinct effects, ranging from regulating blood glucose, to regulating appetite, stomach emptying rate and intestinal motility, which makes them interesting targets for treating metabolic diseases. Awareness regarding the potential effects of the hormones on glucagon secretion is important since secretory abnormalities could manifest as hyperglycemia or even lethal hypoglycemia. Here, we review the effects of each individual hormone on glucagon secretion, their interplay, and how treatments aimed at modulating the plasma levels of these hormones may also influence glucagon secretion and glycemic control.


Assuntos
Glicemia/metabolismo , Glucagon/metabolismo , Pâncreas/metabolismo , Animais , Calcitonina/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Grelina/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 2 Semelhante ao Glucagon/metabolismo , Humanos , Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Neurotensina/metabolismo , Oxintomodulina/metabolismo , Ocitocina/metabolismo , Polipeptídeo Pancreático/metabolismo , Somatostatina/metabolismo , Urocortinas/metabolismo , Vasopressinas/metabolismo
4.
Nat Commun ; 12(1): 4458, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294685

RESUMO

The cellular identity of pancreatic polypeptide (Ppy)-expressing γ-cells, one of the rarest pancreatic islet cell-type, remains elusive. Within islets, glucagon and somatostatin, released respectively from α- and δ-cells, modulate the secretion of insulin by ß-cells. Dysregulation of insulin production raises blood glucose levels, leading to diabetes onset. Here, we present the genetic signature of human and mouse γ-cells. Using different approaches, we identified a set of genes and pathways defining their functional identity. We found that the γ-cell population is heterogeneous, with subsets of cells producing another hormone in addition to Ppy. These bihormonal cells share identity markers typical of the other islet cell-types. In mice, Ppy gene inactivation or conditional γ-cell ablation did not alter glycemia nor body weight. Interestingly, upon ß-cell injury induction, γ-cells exhibited gene expression changes and some of them engaged insulin production, like α- and δ-cells. In conclusion, we provide a comprehensive characterization of γ-cells and highlight their plasticity and therapeutic potential.


Assuntos
Insulina/biossíntese , Células Secretoras de Polipeptídeo Pancreático/metabolismo , Polipeptídeo Pancreático/metabolismo , Precursores de Proteínas/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal , Linhagem da Célula/genética , Feminino , Técnicas de Introdução de Genes , Humanos , Células Secretoras de Insulina/classificação , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Pâncreas/citologia , Pâncreas/embriologia , Pâncreas/crescimento & desenvolvimento , Polipeptídeo Pancreático/deficiência , Polipeptídeo Pancreático/genética , Células Secretoras de Polipeptídeo Pancreático/classificação , Células Secretoras de Polipeptídeo Pancreático/citologia , Gravidez , RNA-Seq
5.
Endocrinology ; 162(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34289060

RESUMO

Islets represent an important site of direct action of the hormone ghrelin, with expression of the ghrelin receptor (growth hormone secretagogue receptor; GHSR) having been localized variably to alpha cells, beta cells, and/or somatostatin (SST)-secreting delta cells. To our knowledge, GHSR expression by pancreatic polypeptide (PP)-expressing gamma cells has not been specifically investigated. Here, histochemical analyses of Ghsr-IRES-Cre × Cre-dependent ROSA26-yellow fluorescent protein (YFP) reporter mice showed 85% of GHSR-expressing islet cells coexpress PP, 50% coexpress SST, and 47% coexpress PP + SST. Analysis of single-cell transcriptomic data from mouse pancreas revealed 95% of Ghsr-expressing cells coexpress Ppy, 100% coexpress Sst, and 95% coexpress Ppy + Sst. This expression was restricted to gamma-cell and delta-cell clusters. Analysis of several single-cell human pancreatic transcriptome data sets revealed 59% of GHSR-expressing cells coexpress PPY, 95% coexpress SST, and 57% coexpress PPY + SST. This expression was prominent in delta-cell and beta-cell clusters, also occurring in other clusters including gamma cells and alpha cells. GHSR expression levels were upregulated by type 2 diabetes mellitus in beta cells. In mice, plasma PP positively correlated with fat mass and with plasma levels of the endogenous GHSR antagonist/inverse agonist LEAP2. Plasma PP also elevated on LEAP2 and synthetic GHSR antagonist administration. These data suggest that in addition to delta cells, beta cells, and alpha cells, PP-expressing pancreatic cells likely represent important direct targets for LEAP2 and/or ghrelin both in mice and humans.


Assuntos
Regulação da Expressão Gênica , Grelina/biossíntese , Polipeptídeo Pancreático/metabolismo , Receptores de Grelina/biossíntese , Animais , Proteínas de Bactérias/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Genes Reporter , Células Secretoras de Glucagon/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Ligantes , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Pâncreas/metabolismo , Análise de Célula Única , Transcriptoma
7.
Nutrients ; 13(2)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572661

RESUMO

We are currently facing an obesity pandemic, with worldwide obesity rates having tripled since 1975. Obesity is one of the main risk factors for the development of non-communicable diseases, which are now the leading cause of death worldwide. This calls for urgent action towards understanding the underlying mechanisms behind the development of obesity as well as developing more effective treatments and interventions. Appetite is carefully regulated in humans via the interaction between the central nervous system and peripheral hormones. This involves a delicate balance in external stimuli, circulating satiating and appetite stimulating hormones, and correct functioning of neuronal signals. Any changes in this equilibrium can lead to an imbalance in energy intake versus expenditure, which often leads to overeating, and potentially weight gain resulting in overweight or obesity. Several lines of research have shown imbalances in gut hormones are found in those who are overweight or obese, which may be contributing to their condition. Therefore, this review examines the evidence for targeting gut hormones in the treatment of obesity by discussing how their dysregulation influences food intake, the potential possibility of altering the circulating levels of these hormones for treating obesity, as well as the role of short chain fatty acids and protein as novel treatments.


Assuntos
Regulação do Apetite/fisiologia , Ácidos Graxos Voláteis/uso terapêutico , Hormônios Gastrointestinais/metabolismo , Obesidade/terapia , Ácido Acético/uso terapêutico , Animais , Apetite/fisiologia , Butiratos/uso terapêutico , Sistema Nervoso Central/fisiologia , Colecistocinina/metabolismo , Dipeptídeos/metabolismo , Dipeptídeos/uso terapêutico , Ingestão de Energia/fisiologia , Metabolismo Energético/fisiologia , Hormônios Gastrointestinais/sangue , Trato Gastrointestinal/fisiologia , Grelina/metabolismo , Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Humanos , Hiperfagia/etiologia , Camundongos , Neuropeptídeo Y/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Sobrepeso/etiologia , Sobrepeso/metabolismo , Oxintomodulina/metabolismo , Oxintomodulina/uso terapêutico , Polipeptídeo Pancreático/metabolismo , Propionatos/uso terapêutico , Saciação/fisiologia
8.
Am J Physiol Endocrinol Metab ; 319(6): E1074-E1083, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33044845

RESUMO

This study aimed to investigate the contributions of two factors potentially impairing glucagon response to insulin-induced hypoglycemia (IIH) in insulin-deficient diabetes: 1) loss of paracrine disinhibition by intra-islet insulin and 2) defects in the activation of the autonomic inputs to the islet. Plasma glucagon responses during hyperinsulinemic-hypoglycemic clamps ([Formula: see text]40 mg/dL) were assessed in dogs with spontaneous diabetes (n = 13) and in healthy nondiabetic dogs (n = 6). Plasma C-peptide responses to intravenous glucagon were measured to assess endogenous insulin secretion. Plasma pancreatic polypeptide, epinephrine, and norepinephrine were measured as indices of parasympathetic and sympathoadrenal autonomic responses to IIH. In 8 of the 13 diabetic dogs, glucagon did not increase during IIH (diabetic nonresponder [DMN]; ∆ = -6 ± 12 pg/mL). In five other diabetic dogs (diabetic responder [DMR]), glucagon responses (∆ = +26 ± 12) were within the range of nondiabetic control dogs (∆ = +27 ± 16 pg/mL). C-peptide responses to intravenous glucagon were absent in diabetic dogs. Activation of all three autonomic responses were impaired in DMN dogs but remained intact in DMR dogs. Each of the three autonomic responses to IIH was positively correlated with glucagon responses across the three groups. The study conclusions are as follows: 1) Impairment of glucagon responses in DMN dogs is not due to generalized impairment of α-cell function. 2) Loss of tonic inhibition of glucagon secretion by insulin is not sufficient to produce loss of the glucagon response; impairment of autonomic activation is also required. 3) In dogs with major ß-cell function loss, activation of the autonomic inputs is sufficient to mediate an intact glucagon response to IIH.NEW & NOTEWORTHY In dogs with naturally occurring, insulin-dependent (C-peptide negative) diabetes mellitus, impairment of glucagon responses is not due to generalized impairment of α-cell function. Loss of tonic inhibition of glucagon secretion by insulin is not sufficient, by itself, to produce loss of the glucagon response. Rather, impaired activation of the parasympathetic and sympathoadrenal autonomic inputs to the pancreas is also required. Activation of the autonomic inputs to the pancreas is sufficient to mediate an intact glucagon response to insulin-induced hypoglycemia in dogs with naturally occurring diabetes mellitus. These results have important implications that include leading to a greater understanding and insight into the pathophysiology, prevention, and treatment of hypoglycemia during insulin treatment of diabetes in companion dogs and in human patients.


Assuntos
Sistema Nervoso Autônomo/efeitos dos fármacos , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/veterinária , Doenças do Cão/metabolismo , Glucagon/farmacologia , Hipoglicemia/induzido quimicamente , Hipoglicemia/metabolismo , Hipoglicemiantes , Insulina , Animais , Glicemia/metabolismo , Peptídeo C/metabolismo , Cães , Epinefrina/sangue , Células Secretoras de Glucagon/efeitos dos fármacos , Técnica Clamp de Glucose , Células Secretoras de Insulina/efeitos dos fármacos , Norepinefrina/sangue , Polipeptídeo Pancreático/metabolismo
9.
Endocrinology ; 161(10)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877513

RESUMO

The free fatty acid receptor G protein-coupled receptor 120 (GPR120) is expressed in pancreatic islets, but its specific cell distribution and function have not been fully established. In this study, a GPR120-IRES-EGFP knockin (KI) mouse was generated to identify GPR120-expressing cells with enhanced green fluorescence proteins (EGFP). EGFP-positive cells collected from KI mouse islets by flow cytometry had a significantly higher expression of pancreatic polypeptide (PP) evidenced by reverse transcriptase (RT)-quantitative polymerase chain reaction (qPCR). Single-cell RT-PCR and immunocytochemical double staining also demonstrated the coexpression of GPR120 with PP in mouse islets. The GPR120-specific agonist TUG-891 significantly increased plasma PP levels in mice. TUG-891 significantly increased PP levels in islet medium in vitro, which was markedly attenuated by GPR120 small interfering RNA treatment. TUG-891-stimulated PP secretion in islets was fully blocked by pretreatment with YM-254890 (a Gq protein inhibitor), U73122 (a phospholipase C inhibitor), or thapsigargin (an inducer of endoplasmic reticulum Ca2+ depletion), respectively. TUG-891 triggered the increase in intracellular free Ca2+ concentrations ([Ca2+]i) in PP cells, which was also eliminated by YM-254890, U73122, or thapsigargin. GPR120 gene expression was significantly reduced in islets of high-fat diet (HFD)-induced obese mice. TUG-891-stimulated PP secretion was also significantly diminished in vivo and in vitro in HFD-induced obese mice compared with that in normal-chow diet control mice. In summary, this study demonstrated that GPR120 is expressed in mouse islet PP cells and GPR120 activation stimulated PP secretion via the Gq/PLC-Ca2+ signaling pathway in normal-chow diet mice but with diminished effects in HFD-induced obese mice.


Assuntos
Cálcio/metabolismo , Ilhotas Pancreáticas/metabolismo , Polipeptídeo Pancreático/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Fosfolipases Tipo C/metabolismo , Animais , Compostos de Bifenilo/farmacologia , Células Cultivadas , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenilpropionatos/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fosfolipases Tipo C/fisiologia
10.
Pancreas ; 49(6): 806-811, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32541637

RESUMO

OBJECTIVE: When total pancreatectomy with islet autotransplantation (TPIAT) is performed for chronic pancreatitis, the pancreas and most of the duodenum are removed, with Roux-en-Y reconstruction of the gastrointestinal tract. Enteroendocrine cells in the intestines and pancreas secrete hormones coordinating digestion and motility, but anatomic reconstruction alters transit of nutrients to these cells. We hypothesized that TPIAT leads to changes in enteroendocrine hormones. METHODS: Glucagon-like peptide 1 (GLP-1), peptide YY (PYY), and pancreatic polypeptide (PP) were measured from mixed-meal tolerance tests of 34 clinical trial participants before and 18 months after TPIAT. Area under the curve of GLP-1 and PYY-stimulated responses were calculated by trapezoidal method, and the PP response was measured as the stimulated max minus baseline (ΔPP). RESULTS: Area under the curve of GLP-1 and PYY increased significantly after TPIAT (GLP-1 average +553.1 pg/mL per minute, P = 0.004; PYY average +4647.9 pg/mL per minute, P = 0.02). ΔPP trended toward lower after TPIAT (average, -52.2 pg/mL, P = 0.06). CONCLUSIONS: In this novel study of enteroendocrine hormones in TPIAT patients, stimulated levels of GLP-1 and PYY were significantly higher after versus before TPIAT. ΔPP was lower after TPIAT, but not significantly. These hormone changes have potential clinical implications that warrant further research.


Assuntos
Células Enteroendócrinas/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Pancreatectomia/métodos , Pancreatite Crônica/cirurgia , Adulto , Feminino , Hormônios Gastrointestinais/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Hormônios Pancreáticos/metabolismo , Polipeptídeo Pancreático/metabolismo , Peptídeo YY/metabolismo , Transplante Autólogo
11.
Am J Physiol Endocrinol Metab ; 318(6): E956-E964, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32182123

RESUMO

Enhanced meal-related enteroendocrine secretion, particularly of glucagon-like peptide-1 (GLP-1), contributes to weight-loss and improved glycemia after Roux-en-Y gastric bypass (RYGB). Dietary glucose drives GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) secretion postoperatively. Understanding how glucose triggers incretin secretion following RYGB could lead to new treatments of diabetes and obesity. In vitro, incretin release depends on glucose absorption via sodium-glucose cotransporter 1 (SGLT1). We investigated the importance of SGLT1/SGLT2 for enteropancreatic hormone concentrations and glucose metabolism after RYGB in a randomized, controlled, crossover study. Ten RYGB-operated patients ingested 50 g of oral glucose with and without acute pretreatment with 600 mg of the SGLT1/SGLT2-inhibitor canagliflozin. Paracetamol and 3-O-methyl-d-glucopyranose (3-OMG) were added to the glucose drink to evaluate rates of intestinal entry and absorption of glucose, respectively. Blood samples were collected for 4 h. The primary outcome was 4-h plasma GLP-1 (incremental area-under the curve, iAUC). Secondary outcomes included glucose, GIP, insulin, and glucagon. Canagliflozin delayed glucose absorption (time-to-peak 3-OMG: 50 vs. 132 min, P < 0.01) but did not reduce iAUC GLP-1 (6,067 vs. 7,273·min·pmol-1·L-1, P = 0.23), although peak GLP-1 concentrations were lowered (-28%, P = 0.03). Canagliflozin reduced GIP (iAUC -28%, P = 0.01; peak concentrations -57%, P < 0.01), insulin, and glucose excursions, whereas plasma glucagon (AUC 3,216 vs. 4,160 min·pmol·L-1, P = 0.02) and amino acids were increased. In conclusion, acute SGLT1/SGLT2-inhibition during glucose ingestion did not reduce 4-h plasma GLP-1 responses in RYGB-patients but attenuated the early rise in GLP-1, GIP, and insulin, whereas late glucagon concentrations were increased. The results suggest that SGLT1-mediated glucose absorption contributes to incretin hormone secretion after RYGB.


Assuntos
Canagliflozina/farmacologia , Derivação Gástrica , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Transportador 2 de Glucose-Sódio/metabolismo , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Peptídeo C/efeitos dos fármacos , Peptídeo C/metabolismo , Estudos Cross-Over , Polipeptídeo Inibidor Gástrico/efeitos dos fármacos , Glucagon/efeitos dos fármacos , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/efeitos dos fármacos , Teste de Tolerância a Glucose , Humanos , Incretinas/metabolismo , Insulina/metabolismo , Pessoa de Meia-Idade , Polipeptídeo Pancreático/efeitos dos fármacos , Polipeptídeo Pancreático/metabolismo , Transportador 1 de Glucose-Sódio/antagonistas & inibidores
12.
J Mol Med (Berl) ; 98(4): 451-467, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32067063

RESUMO

The pancreatic islet is a dense cellular network comprised of several cell types with endocrine function vital in the control of glucose homeostasis, metabolism, and feeding behavior. Within the islet, endocrine hormones also form an intricate paracrine network with supportive cells (endothelial, neuronal, immune) and secondary signaling molecules regulating cellular function and survival. Modulation of these signals has potential consequences for diabetes development, progression, and therapeutic intervention. Beta cell loss, reduced endogenous insulin secretion, and dysregulated glucagon secretion are hallmark features of both type 1 and 2 diabetes that not only impact systemic regulation of glucose, but also contribute to the function and survival of cells within the islet. Advancing research and technology have revealed new islet biology (cellular identity and transcriptomes) and identified previously unrecognized paracrine signals and mechanisms (somatostatin and ghrelin paracrine actions), while shifting prior views of intraislet communication. This review will summarize the paracrine signals regulating islet endocrine function and survival, the disruption and dysfunction that occur in diabetes, and potential therapeutic targets to preserve beta cell mass and function.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Comunicação Parácrina , Transdução de Sinais , Animais , Sobrevivência Celular , Grelina/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucose/metabolismo , Glicogênio/metabolismo , Humanos , Ilhotas Pancreáticas/citologia , Polipeptídeo Pancreático/metabolismo , Somatostatina/metabolismo , Células Secretoras de Somatostatina/metabolismo
13.
J Clin Endocrinol Metab ; 105(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31665480

RESUMO

BACKGROUND: Glucose-dependent insulinotropic polypeptide (GIP) has been suggested to stimulate the secretion of pancreatic polypeptide (PP), an islet hormone thought to regulate gut motility, appetite, and glycemia. OBJECTIVE: To determine whether human GIP1-42 (hGIP) stimulates PP secretion. METHOD: As glycemia modulates the secretion of PP, we measured plasma PP concentrations from 2 studies in healthy men (n = 10) and in patients with type 2 diabetes (T2D) (n = 12), where hGIP1-42 had been administered intravenously during fasting glycemia, hyperglycemia (12 mmol/L), and insulin-induced hypoglycemia (targets: 2.5 mmol/L [healthy]; 3.5 mmol/L [T2D]). Porcine GIP1-42 (pGIP) was also infused intra-arterially in isolated porcine pancreata (n = 4). RESULTS: Mean fasting plasma glucose concentrations were approximately 5 mmol/L (healthy) and approximately 8 mmol/L (T2D). At fasting glycemia, PP concentrations were higher during intravenous hGIP1-42 infusion compared with saline in healthy men (mean [standard error of the mean, SEM], net incremental areas under the curves (iAUCs)[0-30min], 403 [116] vs -6 [57] pmol/L × min; P = 0.004) and in patients with T2D (905 [177] vs -96 [86] pmol/L × min; P = 0.009). During hyperglycemic clamping, mean [SEM] PP concentrations were significantly higher during hGIP1-42 infusion compared with saline in patients with T2D (771 [160] vs -183 [117] pmol/L × min; P = 0.001), but not in healthy individuals (-8 [86] vs -57 [53] pmol/L × min; P = 0.69). When plasma glucose levels were declining in response to exogenous insulin, mean [SEM] PP concentrations were higher during hGIP1-42 infusion compared with saline in healthy individuals (294 [88] vs -82 [53] pmol/L × min; P = 0.0025), but not significantly higher in patients with T2D (586 [314] vs -120 [53]; P = 0.070). At target hypoglycemia, PP levels surged in both groups during both hGIP1-42 and saline infusions. In isolated pancreata, pGIP1-42 increased mean [SEM] PP output in the pancreatic venous effluent (baseline vs infusion, 24[5] vs 79 [16] pmol/min x min; P = 0.044). CONCLUSION: GIP1-42 increases plasma PP secretion in healthy individuals, patients with T2D, and isolated porcine pancreata. Hyperglycemia blunts the stimulatory effect of hGIP1-42 in healthy individuals, but not in patients with T2D.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Fármacos Gastrointestinais/farmacologia , Hiperglicemia/metabolismo , Hipoglicemia/metabolismo , Secreção de Insulina/efeitos dos fármacos , Polipeptídeo Pancreático/metabolismo , Animais , Biomarcadores/análise , Glicemia/análise , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Seguimentos , Humanos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/patologia , Hipoglicemia/tratamento farmacológico , Hipoglicemia/patologia , Insulina/sangue , Prognóstico , Estudos Retrospectivos , Secretagogos/farmacologia , Suínos
14.
Pharm Res ; 36(10): 143, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31385111

RESUMO

PURPOSE: Pancreatic Polypeptide-secreting tumor of the distal pancreas (PPoma) is a rare, difficult and indolent type of cancer with a survival rate of 5-year in only 10% of all cases. The PPoma is classified as a neuroendocrine tumor (NET) not functioning that overexpresses SSTR 2 (somatostatin receptor subtype 2). Thus, in order to improve the diagnosis of this type of tumor, we developed nanoparticulate drug carriers based on poly-lactic acid (PLA) polymer loaded with octreotide and radiolabeled with Technetium-99 m (99mTc). METHODS: PLA/PVA octreotide nanoparticles were developed by double-emulsion technique. These nanoparticles were characterized by Atomic Force Microscopy (AFM) and Dynamic Light Scattering (DLS) and radiolabeled with 99mTc by the direct via forming 99mTc-PLA/PVA octreotide nanoparticles. The safety of these nanosystems was evaluated by the MTT cell toxicity assay and their in vivo biodistribution was evaluated in xenografted inducted animals. RESULTS: The results showed that a 189 nm sized nanoparticle were formed with a PDI of 0,097, corroborating the monodispersive behavior. These nanoparticles were successfully radiolabeled with 99mTc showing uptake by the inducted tumor. The MTT assay corroborated the safety of the nanosystem for the cells. CONCLUSION: The results support the use of this nanosystem (99mTc-PLA/PVA octreotide nanoparticles) as imaging agent for PPoma. Graphical Abstract Polypeptide-Secreting Tumor of the Distal Pancreas (PPoma) Radiolabeled Nanoparticles for Imaging.


Assuntos
Carcinoma Ductal Pancreático/diagnóstico por imagem , Nanopartículas/química , Octreotida/química , Neoplasias Pancreáticas/diagnóstico por imagem , Polipeptídeo Pancreático/metabolismo , Poliésteres/química , Compostos Radiofarmacêuticos/química , Tecnécio/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/metabolismo , Octreotida/metabolismo , Pâncreas/diagnóstico por imagem , Pâncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Tamanho da Partícula , Cintilografia/métodos , Compostos Radiofarmacêuticos/metabolismo , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Distribuição Tecidual , Neoplasias Pancreáticas
15.
Neuropeptides ; 76: 101933, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31230758

RESUMO

Obesity has become a global health problem and therefore understanding of the mechanisms regulating hunger and satiety is of utmost importance for the development of new treatment strategies. The Y4 receptor, encoded by the NPY4R gene, and its ligand pancreatic polypeptide (PP) have been reported to mediate a satiety signal. Multiple genetic studies have reported an association between NPY4R copy number and body weight. The gene also displays several SNP variants, many of which lead to amino acid differences, making it interesting to study. We have investigated the functional properties of 12 naturally occurring amino acid sequence variants of the Y4 and interpret the results in relation to sequence conservation and our structural model of the human Y4 receptor protein. Three receptor variants, Cys201ECL2Tyr, Val2716.41Leu and Asn3187.49Asp, were found to completely lose functional response, measured as inositol phosphate turnover, while retaining membrane expression. They display high sequence conservation and have important roles in the receptor structure. For two receptor variants the potency of PP was significantly decreased, Cys34NTSer (EC50 = 2.9 nM, p < .001) and Val1353.46Met (EC50 = 3.0 nM, p < .01), compared to wild-type Y4 (EC50 = 0.68 nM). Cys34 forms a disulphide bond with Cys298, linking the N-terminal part to ECL3. The Val1353.46Met variant has an amino acid replacement located in the TM3 helix, one helix turn above the highly conserved ERH motif. This position has influence on the network of residues involved in receptor activation and subsequent inactivation. Sequence conservation and the structural model are consistent with these results. The remaining seven positions had no significant effect on the receptor's functional response compared to wild-type Y4. These positions display more variation during evolution. Understanding of the interactions between the Y4 receptor and its native PP agonist and the effects of amino acid variation on its functional response will hopefully lead to future therapeutic possibilities.


Assuntos
Obesidade/genética , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Humanos , Técnicas In Vitro , Polipeptídeo Pancreático/metabolismo , Polimorfismo de Nucleotídeo Único , Estrutura Terciária de Proteína
16.
Nature ; 567(7746): 43-48, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30760930

RESUMO

Cell-identity switches, in which terminally differentiated cells are converted into different cell types when stressed, represent a widespread regenerative strategy in animals, yet they are poorly documented in mammals. In mice, some glucagon-producing pancreatic α-cells and somatostatin-producing δ-cells become insulin-expressing cells after the ablation of insulin-secreting ß-cells, thus promoting diabetes recovery. Whether human islets also display this plasticity, especially in diabetic conditions, remains unknown. Here we show that islet non-ß-cells, namely α-cells and pancreatic polypeptide (PPY)-producing γ-cells, obtained from deceased non-diabetic or diabetic human donors, can be lineage-traced and reprogrammed by the transcription factors PDX1 and MAFA to produce and secrete insulin in response to glucose. When transplanted into diabetic mice, converted human α-cells reverse diabetes and continue to produce insulin even after six months. Notably, insulin-producing α-cells maintain expression of α-cell markers, as seen by deep transcriptomic and proteomic characterization. These observations provide conceptual evidence and a molecular framework for a mechanistic understanding of in situ cell plasticity as a treatment for diabetes and other degenerative diseases.


Assuntos
Diabetes Mellitus/patologia , Diabetes Mellitus/terapia , Células Secretoras de Glucagon/citologia , Células Secretoras de Glucagon/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/patologia , Animais , Biomarcadores/análise , Linhagem da Célula/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Diabetes Mellitus/imunologia , Diabetes Mellitus/metabolismo , Modelos Animais de Doenças , Feminino , Glucagon/metabolismo , Células Secretoras de Glucagon/efeitos dos fármacos , Células Secretoras de Glucagon/transplante , Glucose/farmacologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/metabolismo , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Masculino , Camundongos , Especificidade de Órgãos/efeitos dos fármacos , Polipeptídeo Pancreático/metabolismo , Células Secretoras de Polipeptídeo Pancreático/citologia , Células Secretoras de Polipeptídeo Pancreático/efeitos dos fármacos , Células Secretoras de Polipeptídeo Pancreático/metabolismo , Proteômica , Análise de Sequência de RNA , Transativadores/genética , Transativadores/metabolismo , Transcriptoma , Transdução Genética
17.
Nutrients ; 11(2)2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30678029

RESUMO

INTRODUCTION: Proteins, particularly whey proteins, represent the most satiating macronutrient in animals and humans. A dietetic regimen based on proteins enriched preload before eating might be a strategy to counteract obesity. AIMS AND METHODS: The aim of the present study was to evaluate the effects of an isocaloric drink containing whey proteins or maltodextrins (preload) on appetite (satiety/hunger measured by a visual analogue scale or VAS), glucometabolic control (blood glucose/insulin), and anorexigenic gastrointestinal peptides (pancreatic polypeptide or PP, glucagon-like peptide 1 or GLP-1 and peptide YY or PYY) in a cohort of obese young women (n = 9; age: 18.1 ± 3.0 years; body mass index, BMI: 38.8 ± 4.5 kg/m²). After two and a half hours, they were administered with a mixed meal at a fixed dose; satiety and hunger were measured by VAS. RESULTS: Each drink significantly augmented satiety and reduced hunger, and the effects were more evident with whey proteins than maltodextrins. Similarly, there were significant increases in GLP-1 and PYY levels (but not PP) after the ingestion of each drink; these anorexigenic responses were higher with whey proteins than maltodextrins. While insulinemia identically increased after each drink, whey proteins induced a lower glycemic response than maltodextrins. No differences in satiety and hunger were found after the meal, which is presumably due to the late administration of the meal test, when the hypophagic effect of whey proteins was disappearing. CONCLUSIONS: While whey proteins actually reduce appetite, stimulate anorexigenic gastrointestinal peptides, and improve glucometabolic homeostasis in young obese women, further additional studies are mandatory to demonstrate their hypophagic effects in obese subjects, when administered as preload before eating.


Assuntos
Apetite/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Obesidade/metabolismo , Polipeptídeo Pancreático/metabolismo , Proteínas do Soro do Leite/farmacologia , Adolescente , Adulto , Glicemia/análise , Feminino , Peptídeo 1 Semelhante ao Glucagon/sangue , Homeostase/efeitos dos fármacos , Humanos , Insulina/sangue , Polipeptídeo Pancreático/sangue , Peptídeo YY/sangue , Peptídeo YY/metabolismo , Polissacarídeos/administração & dosagem , Polissacarídeos/farmacologia , Saciação/efeitos dos fármacos , Proteínas do Soro do Leite/administração & dosagem , Adulto Jovem
18.
ACS Chem Biol ; 13(11): 3078-3086, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30272440

RESUMO

Miniproteins have a size between that of larger biologics and small molecules and presumably possess the advantages of both; they represent an expanding class of promising scaffolds for the design of affinity reagents, enzymes, and therapeutics. Conventional strategies to promote cellular uptake of miniproteins rely on extensive grafting or embedding of arginine residues. However, the requirement of using cationic arginines would cause problems to the modified miniproteins, for example, low solubility in solutions (proneness of aggregation) and potential toxicity, which are open secrets in the peptide and protein communities. In this work, we report that the cell-permeability of cationic miniproteins can be further markedly increased through appending a magic CXC (cysteine- any-cysteine) motif, which takes advantage of thiol-disulfide exchanges on the cell surface. More importantly, we discovered that the high cell permeability of the CXC-appended miniproteins can still be preserved when the embedded arginines are all substituted with lysine residues, indicating that the "arginine magic" essential to almost all cell-permeable peptides and (mini)proteins is not required for the CXC-mediated cellular uptake. This finding provides a new avenue for designing highly cell-permeable miniproteins without compromise of potential toxicity and stability arising from arginine embedding or grafting.


Assuntos
Arginina/química , Lisina/química , Polipeptídeo Pancreático/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Citometria de Fluxo/métodos , Fluoresceínas/química , Corantes Fluorescentes/química , Células HeLa , Humanos , Microscopia Confocal/métodos , Polipeptídeo Pancreático/síntese química , Polipeptídeo Pancreático/química , Engenharia de Proteínas/métodos
19.
Cell Tissue Res ; 374(3): 517-529, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30112574

RESUMO

Nociceptin (NC), also known as Orphanin FQ, is a brain peptide involved in the regulation of pain, but its role in the endocrine pancreas is poorly understood. The present study examines the pattern of distribution of NC and its effect on insulin and glucagon secretion after the onset of diabetes mellitus (DM). Male Wistar rats weighing 150-200 g were made diabetic with streptozotocin (60 mg/kg body weight, intraperitoneally). Four weeks after the induction of DM, pancreatic tissues were retrieved and processed for immunofluorescence, immunoelectron microscopy, and insulin and glucagon secretion. Isolated islets from non-diabetic and diabetic rats were used to determine the effect of NC on insulin release. NC was discerned in islet cells of non-diabetic control and diabetic rat pancreata. NC co-localized only with insulin in pancreatic beta cells. NC did not co-localize with either glucagon or somatostatin or pancreatic polypeptide. The number of NC-positive cells was markedly (p < 0.001) reduced after the onset of DM. Electron microscopy study showed that NC is located with insulin in the same secretory granules of the beta cells of both non-diabetic and diabetic rat pancreas. NC inhibits insulin release markedly (p < 0.05) from pancreatic tissue fragments of non-diabetic and diabetic rats. In contrast, NC at 10-12 M stimulates insulin release in isolated islets of DM rats. In conclusion, NC co-localizes with insulin only in the islet of Langerhans. The co-localization of NC with insulin suggests a role for NC in the regulation of pancreatic beta cell function.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Secreção de Insulina , Peptídeos Opioides/metabolismo , Pâncreas/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Glucagon/metabolismo , Insulina/metabolismo , Masculino , Modelos Biológicos , Peptídeos Opioides/farmacologia , Pâncreas/ultraestrutura , Polipeptídeo Pancreático/metabolismo , Ratos Wistar , Somatostatina/metabolismo
20.
PLoS One ; 13(2): e0192441, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29466430

RESUMO

We previously demonstrated that infusion of an intestinal peptide called xenin-25 (Xen) amplifies the effects of glucose-dependent insulinotropic polypeptide (GIP) on insulin secretion rates (ISRs) and plasma glucagon levels in humans. However, these effects of Xen, but not GIP, were blunted in humans with type 2 diabetes. Thus, Xen rather than GIP signaling to islets fails early during development of type 2 diabetes. The current crossover study determines if cholinergic signaling relays the effects of Xen on insulin and glucagon release in humans as in mice. Fasted subjects with impaired glucose tolerance were studied. On eight separate occasions, each person underwent a single graded glucose infusion- two each with infusion of albumin, Xen, GIP, and GIP plus Xen. Each infusate was administered ± atropine. Heart rate and plasma glucose, insulin, C-peptide, glucagon, and pancreatic polypeptide (PP) levels were measured. ISRs were calculated from C-peptide levels. All peptides profoundly increased PP responses. From 0 to 40 min, peptide(s) infusions had little effect on plasma glucose concentrations. However, GIP, but not Xen, rapidly and transiently increased ISRs and glucagon levels. Both responses were further amplified when Xen was co-administered with GIP. From 40 to 240 min, glucose levels and ISRs continually increased while glucagon concentrations declined, regardless of infusate. Atropine increased resting heart rate and blocked all PP responses but did not affect ISRs or plasma glucagon levels during any of the peptide infusions. Thus, cholinergic signaling mediates the effects of Xen on insulin and glucagon release in mice but not humans.


Assuntos
Glucagon/metabolismo , Intolerância à Glucose/sangue , Insulina/metabolismo , Neurotensina/farmacologia , Polipeptídeo Pancreático/metabolismo , Receptores Colinérgicos/metabolismo , Transdução de Sinais , Adulto , Atropina/administração & dosagem , Atropina/farmacologia , Glicemia/metabolismo , Estudos Cross-Over , Feminino , Polipeptídeo Inibidor Gástrico/administração & dosagem , Frequência Cardíaca/efeitos dos fármacos , Humanos , Secreção de Insulina , Masculino , Pessoa de Meia-Idade , Neurotensina/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...